A Stablized SQP Method via Linear Equations 1

نویسندگان

  • Dong-Hui Li
  • Liqun Qi
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An SQP Method for Optimal Control of Weakly Singular Hammerstein Integral Equations

We investigate local convergence of an SQP method for non-linear optimal control of weakly singular Hammerstein integral equations. Suucient conditions for local quadratic convergence of the method based are discussed.

متن کامل

Resolution of Fuzzy Complex Systems of Linear Equations Via Wu's Method

The aim of this paper is to present algebraic method which is called Wu's method to solving fuzzy complex systems of linear equations. Wu's method is used as a solution procedure for solving the crisp polynomial equations system. This algorithm leads to solving characteristic sets that are amenable to easy solution. To illustrate the easy application of the proposed method, numerical examples a...

متن کامل

Using Modified IPSO-SQP Algorithm to Solve Nonlinear Time Optimal Bang-Bang Control Problem

In this paper, an intelligent-gradient based algorithm is proposed to solve time optimal bang-bang control problem. The proposed algorithm is a combination of an intelligent algorithm called improved particle swarm optimization algorithm (IPSO) in the first stage of optimization process together with a gradient-based algorithm called successive quadratic programming method (SQP) in the second s...

متن کامل

Numerical solution of system of linear integral equations via improvement of block-pulse functions

In this article, a numerical method based on  improvement of block-pulse functions (IBPFs) is discussed for solving the system of linear Volterra and Fredholm integral equations. By using IBPFs and their operational matrix of integration, such systems can be reduced to a linear system of algebraic equations. An efficient error estimation and associated theorems for the proposed method are also ...

متن کامل

Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver

Large scale optimization of systems governed by partial differential equations (PDEs) is a frontier problem in scientific computation. The state-of-the-art for such problems is reduced quasi-Newton sequential quadratic programming (SQP) methods. These methods take full advantage of existing PDE solver technology and parallelize well. However, their algorithmic scalability is questionable; for c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000